
Extensions Framework &
Orchestrate Anything

About Me

• Harikrishna Patnala

• PMC and Committer @ Apache CloudStack project

• Born and brought up in CloudStack

• Lead Software Engineer @ ShapeBlue

Recap – CCC 2024

Why Extensions?

● Plug in External Logic Easily

○ Integrate custom scripts or tools directly into CloudStack workflows

○ Ideal for operators and developers outside the core project

● Decouples external logic from CloudStack core

● Integrations can be done easily

What can be Achieved?

● Can integrate new Instance provisioners or hypervisors

○ Proxmox

○ Hyper-V

○ Firecracker

○ MaaS

○ Baremetal

● Define custom actions like

○ Snapshots

○ Clone operations

○ Backups

● Can integrate new Network Extensions

Extensions Framework

● Integrates external systems
and workflows

● An executable binary or
script in any programming
language that acts as a
bridge between CloudStack
and the external system

● Available from 4.21.0

CloudStack

Extension 1

Extension 2

Extension 3

Extensions Framework

● Extensions of different types can be defined.

● Currently Orchestrator type is supported.

● Communication using JSON structured payload

● Ability to define custom actions

● Extension binary or script file(s) will be placed at

/usr/share/cloudstack-management/extensions/<EXTENSION_NAME>

● Extension data will be stored at

/var/lib/cloudstack/management/extensions/<EXTENSION_NAME>

Extension Framework - Workflow

Extension

Communication with
JSON structured

payloads

Extension Framework
Workflow Example

Communication with
JSON structured

payloads

Proxmox Extension Script

• Create()
• Delete()
• Start()
• Stop()

Custom Actions

Operators can define
custom actions for

each extension

Supports user-defined
input parameters,

success/error
messages, allowed

role types

Actions can be linked
to specific resource

types

Custom Actions - Workflow

Add a handler for
the custom action

in the extension
binary/script

Extension

Custom action is
linked to an
extension

Orchestrator Extension

● Allows instance deployment on external
systems

● Built-in extensions added for:

○ Proxmox

○ Hyper-V

○ MaaS

● Allows deploy, start, stop, reboot,
expunge operations. More can be
added using custom actions

● (Optional) Prepare action allows
extension to update some of the fields
CloudStack instance before deployment

○ Eg. MAC address for the Instance

Built-in Extensions

Adding Extension

● Basic details:
● name
● path
● type
● type-specific configuration

● Optional metadata in form
of key-value pair which will
be passed to the
binary/script

Registering Extension Resources

● For Orchestrator Type:
● Clusters
● Hosts
● Templates
● Service Offering (Optional)

● Optional metadata in form
of key-value pair which will
be passed to the
binary/script

Using Extension (Trigger Action)

● No specific difference for
Users

● For Orchestrator, Users will
select the corresponding
Template and the Instance
will be deployed

Running Custom Action

● Run action show for
the applicable
resources

● Auto generated UI with
value options,
validations

Firecracker Extension

About me

• Marco Sinhoreli

● Committer @ Apache CloudStack Project

● 25+ years in IT and cloud infrastructure

● Technical Marketing Manager @ ShapeBlue

Proof of Concept – Use With Caution

The Firecracker extension is still experimental and has not been
validated for production.

Testing in non-critical environments is strongly recommended.

About Firecracker

Lightweight VMM by AWS for serverless, edge, and container workloads

Boots microVMs in milliseconds with minimal memory overhead

Limitation: lacks orchestration and high-level REST APIs

Goal: let CloudStack manage Firecracker microVMs as standard Instances

Firecracker Extension + Agent

CloudStack firecracker.py
(http client)

Firecracker
host

Firecracker
host

Agent Firecracker
host

MicroVM

MicroVM

MicroVM

MicroVM

MicroVM

MicroVM

MicroVM

MicroVM

MicroVM

MicroVM

MicroVM

MicroVM

Agent

Agent

Firecracker Agent Capabilities

REST API endpoints: /v1/create, /v1/stop, /v1/delete

Storage backends: file, LVM, LVM-thin

Networking backends: Linux bridge (VLAN-aware) and OVS

Process control via tmux for isolation and restart recovery

Idempotent operations with persistent state on the Host

AuthN/AuthZ via PAM

TLS + mTLS encryption for all endpoints

Demo

Future & What’s Next

● New Types - Network, Authenticator, etc

● Usability Improvements - feedback from community

● Extension marketplace?

QA

Resources

• https://docs.cloudstack.apache.org/en/latest/adminguide/exten
sions.html

• https://docs.cloudstack.apache.org/en/latest/adminguide/exten
sions/inbuilt_extensions.html

• https://github.com/msinhore/cloudstack-firecracker-extension

	Slide 1: Extensions Framework & Orchestrate Anything
	Slide 2: About Me
	Slide 3: Recap – CCC 2024
	Slide 4: Why Extensions?
	Slide 5: What can be Achieved?
	Slide 6: Extensions Framework
	Slide 7: Extensions Framework
	Slide 8: Extension Framework - Workflow
	Slide 9: Extension Framework Workflow Example
	Slide 10: Custom Actions
	Slide 11: Custom Actions - Workflow
	Slide 12: Orchestrator Extension
	Slide 13: Built-in Extensions
	Slide 14: Adding Extension
	Slide 15: Registering Extension Resources
	Slide 16: Using Extension (Trigger Action)
	Slide 17: Running Custom Action
	Slide 18: Firecracker Extension
	Slide 19: About me
	Slide 20: Proof of Concept – Use With Caution
	Slide 21: About Firecracker
	Slide 22: Firecracker Extension + Agent
	Slide 23: Firecracker Agent Capabilities
	Slide 24: Demo
	Slide 25: Future & What’s Next
	Slide 26: QA
	Slide 27: Resources

