OOOOOOOOOOOOO
EEEEEEEEEE

CloudStack Scalability

Our observations in the field scaling from 20 to 20,000 Hosts

About me STACK

ger at Shapeblue

With Cloudstack since 2016

clﬁ?d

Background STACK

N g
/

* Last year at CCC, Abhishek talked
WORK DONE - CONTD... about scalability and

performance improvements®*.

e 4.20.0

Move to more performant HikariCP database connection pooling library,

* Customer stories y

https: ithub.com/apache/cloudstack/pull/9518 o Telco 3000+ hosts r f

Introduced caching framework and dynamic config key caching using Caffeine

library, https://github.com/apache/cloudstack/pull/9628 ° Telco NZOO h S
e 4.20.1#
Larger scaling work around caching usage, agent-server connection improvements, ® TeCh Compa nk\: 1 5_20k
—

concurrency, optimisations. https://github.com/apache/cloudstack/pull/9840 hosts
listxMetrics API related UI improvement,
https: ithub.com/apache/cloudstack/pull /9825

Management server maintenance, https://github.com/apache/cloudstack/pull/9854

And more..

* https://www.cloudstackcollab.org/wp-content/uploads/2024/12/CCC-2024-Scaling-CloudStack-Abhishek-Kumar.pdf

Before We Start

These are patterns we’ve seen repeat in real
environments and simulation

Hosts is not the only aspect of scaling

Scaling Journey: Tree Key Phases STACK

* Hardware

* Basic System Setup -
Man/DB/Network and
Storage

* Resource Monitoring

Architectural Changes
DB Optimization
Network & Storage
Data Purging

clb'l?d

COLLABORATION
CONFERENCE

DB and General Pooling
APl Concurrency

Agent Communication
Resource Allocation &
Placement

M
Phase 1: Scaling to 200 Hosts o

COLLABORATION
CONFERENCE

Basic Infrastructure Setup

Storage Solution

Hardware — Hosts/Network Devices

Resource Distribution and Monitoring

Basic System Tuning

Niente

Network Configuration
Advanced network with

traffic segmentation:
* Guest

* Management

* Public

» Storage

Storage — consider

cloud

STACK

COLLABORATION
CONFERENCE

mount options: mount -t nfs
vers=3,tcp,rsize=65536,wsize=
noatime,nodiratime,nfsvers=3,ti
=600

Server side: in nfs.conf:

[nfsd]

threads=128

Resource Monitoring

cl'o'lrd

STACK

COLLABORATION =
CONFERENCE &

Resource Monitoring

CloudStack Alerts:
Agent disconnects
Capacity threshold
Primary Storage usage
Secondary Storage usage

cloud

STACK

COLLABORATION
CONFERENCE

Phase 1: Summary STACK

o

stock installation No actual scalability chz 18€

cloud
Phase 2: Optimizations STACK

COLLABORATION
CONFERENCE

Architectural Database Network and Purging/Managing

optimizations Stqrage large data
optimizations

changes on our
deployment

Architecture Changes

* Management server and DB separation

 Key benefits
« Distributed arch for improved scalability
 Dedicated HW resource/ avoid noisy neighbor

cloud
Network and Storage STACK

COLLABORATION
CONFERENCE

Network Storage

pes
Advance Netwo ;J
« Enables 10O v o]
* Implement S :

<
* Dedicated n S
Consider SDN sjilis g

nect=8
0:00:00 B - . d.perhost=

Number of workers used kers=4

Database Optimization STACK

OOOOOOOOOOOOO

EEEEEEEEEE

« MySQL itself can handle up to 50k QPS

* innodb_buffer_pool_size = 60-70% of total RAM.
* innodb_log_file_size = 1G

« Add indexes on large tables (e.g., vm_instance, async
nost)

* Run ANALYZE TABLE and OPTIMIZE TABLE periodically
* Implement purging strategy

cloud
Purge Strateqgy STACK

COLLABORATION
CONFERENCE

Scheduled Purges:

* expunged.resource.purge.job.delay = 180

* expunged.resources.purge.batch.size = 50

» expunged.resources.purge.delay = 300

* expunged.resources.purge.enabled = true

* expunged.resources.purge.interval = 86400

* expunged.resources.purge.keep.past.days = 30

* expunged.resources.purge.resources = [leave empty]

* expunged.resources.purge.start.time = yyyy-MM-dd HH:mm:ss

On demand Purging:

cmk purge expungedresources startdate=2024-04-15 enddate=2024-04-20
resourcetype=VirtualMachine

cmk remove rawusagerecords interval=60

Summary

4 o)
Introduce changes in

-

architecture and
optimise storage and
networks

J

cloud

STACK

COLLABORATION

CONFERENCE

| cloud
Phase 3: Full Scale STACK

COLLABORATION
CONFERENCE

Database and General Pooling

\/ API Concurrency and Performance

¥ Agent Communication Issues

E GC Hiccups and Stalling

M
Database — Pooling and concurrency coud

OOOOOOOOOOOOO

Connection pooling - in db.properties:

e db.<DATABASE>.connectionPoolLib = DBCP2 ->
HikariCP

Repeated queries and thread concurrency
In my.cnf

* query_cache_size = 64M and query_cache_type =
1 for repetitive queries like listVirtualMachines;

- thread_concurrency = 2 * CPU cores (e.g., 64 for
32-core); boosts parallel query execution

J

cloud
General Pooling STACK

COLLABORATION
CONFERENCE

Resource and Stats Pooling
* ping.interval and ping.timeout — tune host health check frequency

capacity.calculate.workers — parallelize capacity checks

storage.pool.host.connect.workers — speed up storage attach
operations

vm.stats.interval and vm.sync.interval — reduce collection ead

* vm.sync.power.state.transitioning=false — skip noisy transitions

storage.stats.interval — control polling frequency
* network.gc.interval, ipaddress.gc.interval — adjust cleanup cycles

Caching Framework

Total time taken to deploy 10k VMs with 50 workers

B Without change [With change

c
Q
=
©
-
)
E
—
©
o
|_

1:57:04 ‘||I

10000 20000 30000 40000

VMs deployed - 10k added each time

* https://github.com/apache/cloudstack/pull/9628

50000

cloud

STACK

COLLABORATION

CONFERENCE i

cloud
Agent Communication STACK

COLLABORATION

Before

currengy

100 200 300

Time taken in milliseconds to reconnect a host

CONFERENCE i

s
JVM GC algo coud

COLLABORATION
CONFERENCE

At large scale ParallelGC starts to stall
e Switching from ParallelGC to G1GC

In /etc/default/cloudstack-management

JAVA OPTS="SJAVA OPTS -XX:+UseGlGC -XX:MaxGCPauseMillis=200 -
XX:+ParallelRefProcEnabled”

systemctl restart cloudstack—-management

» Advantages:
» More predictable API latency
» Coping better under burst load

Final thoughts STACK

o P

o P

o P

* These are not rules or full guide
» Take this as a starting point, not a final solution

OOOOOOOOOOOOO
EEEEEEEEEE

nase 1: Keep it simple and build solid foundation
nase 2. Start shaping the performance for predictable behavior

nase 3: Fine tuning of pools, threads, and GC to avoid stalls

	Slide 1: CloudStack Scalability
	Slide 2: About me
	Slide 3: Background
	Slide 4: Before We Start
	Slide 5: Scaling Journey: Tree Key Phases
	Slide 6: Phase 1: Scaling to 200 Hosts
	Slide 7: Basic System Tuning
	Slide 8: Resource Monitoring
	Slide 9: Resource Monitoring
	Slide 10: Phase 1: Summary
	Slide 11: Phase 2: Optimizations
	Slide 12: Architecture Changes
	Slide 13: Network and Storage
	Slide 14: Database Optimization
	Slide 15: Purge Strategy
	Slide 16: Summary
	Slide 17: Phase 3: Full Scale
	Slide 18: Database – Pooling and concurrency
	Slide 19: General Pooling
	Slide 20: Caching Framework
	Slide 21: Agent Communication
	Slide 22: JVM GC algo
	Slide 23: Final thoughts
	Slide 24: Q&A

