
CloudStack Scalability
Our observations in the field scaling from 20 to 20,000 Hosts

About me

With Cloudstack since 2016

QA Manager at Shapeblue

Dad of 2 girls

Background

• Last year at CCC, Abhishek talked
about scalability and
performance improvements*.

• Customer stories

• Telco 3000+ hosts

• Telco ~200 hosts

• Tech company – 15-20k
hosts

* https://www.cloudstackcollab.org/wp-content/uploads/2024/12/CCC-2024-Scaling-CloudStack-Abhishek-Kumar.pdf

Before We Start

Hosts is not the only aspect of scaling

These are patterns we’ve seen repeat in real
environments and simulation

Scaling Journey: Tree Key Phases

Optimization – Up
to 2k hosts
• Architectural Changes
• DB Optimization
• Network & Storage
• Data Purging

Foundation – Up
to 200 hosts
• Hardware
• Basic System Setup –

Man/DB/Network and
Storage

• Resource Monitoring
Full Scale – Up to
20k hosts
• DB and General Pooling
• API Concurrency
• Agent Communication
• Resource Allocation &

Placement

Phase 1: Scaling to 200 Hosts

Basic Infrastructure Setup

Storage Solution

Hardware – Hosts/Network Devices

Resource Distribution and Monitoring

Basic System Tuning

Network
Network Configuration
Advanced network with
traffic segmentation:
• Guest
• Management
• Public
• Storage

Management
Server and
Database
• Niente

Storage
Storage – consider NFS
• mount options: mount -t nfs -o

vers=3,tcp,rsize=65536,wsize=65536,
noatime,nodiratime,nfsvers=3,timeo
=600

• Server side: in nfs.conf:
[nfsd]
threads=128

Resource Monitoring
Management Server and Database Monitoring

Resource Monitoring
Hypervisor and User Instance Monitoring

CloudStack Native Metrics View:
• Hosts:

• CPU Usage
• Memory Usage

• User Instances:
• CPU usage
• Memory usage
• Network traffic usage

CloudStack Alerts:
• Agent disconnects
• Capacity threshold
• Primary Storage usage
• Secondary Storage usage

Phase 1: Summary

Go with stock installation No actual scalability changes
required

Phase 2: Optimizations

Architectural
changes on our

deployment

Database
optimizations

Network and
Storage

optimizations

Purging/Managing
large data

Architecture Changes

• Management server and DB separation

• Key benefits
• Distributed arch for improved scalability

• Dedicated HW resource/ avoid noisy neighbor

Network and Storage

Advance Networking model + VLAN trunking
• Enables 1000 + isolated networks
• Implement VPCs - better mimicking of DC
• Dedicated networks per storage type
Consider SDN solutions or VXLAN and BGP

Storage pool types:

• Both NFS and Object Storage types
• Add capacity dynamically

Scope and provisioning:
• Use cluster-wide pools
• Introduce storage tags at offering level

• overprovisioning - 2.0

Performance and tuning:

• NFS mount opt: vers=4.1,nconnect=8
• concurrent.snapshots.threshold.perhost=

5

• storage.pool.host.connect.workers = 4

Network Storage

Database Optimization

• MySQL itself can handle up to 50k QPS
• Slow Queries and Fragmented tables

• innodb_buffer_pool_size = 60–70% of total RAM.

• innodb_log_file_size = 1G

• Add indexes on large tables (e.g., vm_instance, async_job, event,
host)

• Run ANALYZE TABLE and OPTIMIZE TABLE periodically

• Implement purging strategy

Purge Strategy

Scheduled Purges:
• expunged.resource.purge.job.delay = 180

• expunged.resources.purge.batch.size = 50

• expunged.resources.purge.delay = 300

• expunged.resources.purge.enabled = true

• expunged.resources.purge.interval = 86400

• expunged.resources.purge.keep.past.days = 30

• expunged.resources.purge.resources = [leave empty]

• expunged.resources.purge.start.time = yyyy-MM-dd HH:mm:ss

On demand Purging:
cmk purge expungedresources startdate=2024-04-15 enddate=2024-04-20
resourcetype=VirtualMachine

cmk remove rawusagerecords interval=60

Summary

Systems are large
enough that small

issues start to matter

Introduce changes in
architecture and

optimise storage and
networks

Apply changes and
take advantage of

monitoring

Phase 3: Full Scale

Database and General Pooling

API Concurrency and Performance

Agent Communication Issues

GC Hiccups and Stalling

Database – Pooling and concurrency

Connection pooling - in db.properties:

• db.<DATABASE>.connectionPoolLib = DBCP2 ->
HikariCP

Repeated queries and thread concurrency

In my.cnf

• query_cache_size = 64M and query_cache_type =
1 for repetitive queries like listVirtualMachines;

• thread_concurrency = 2 * CPU cores (e.g., 64 for
32-core); boosts parallel query execution

General Pooling

Resource and Stats Pooling

• ping.interval and ping.timeout – tune host health check frequency

• capacity.calculate.workers – parallelize capacity checks

• storage.pool.host.connect.workers – speed up storage attach
operations

• vm.stats.interval and vm.sync.interval – reduce collection overhead

• vm.sync.power.state.transitioning=false – skip noisy transitions

• storage.stats.interval – control polling frequency

• network.gc.interval, ipaddress.gc.interval – adjust cleanup cycles

Caching Framework

Some APIs have repeated queries for config/permissions

* https://github.com/apache/cloudstack/pull/9628

• Caching framework* - available in 4.20

• In memory caching

• Avoiding repetitive DB querying

• Improves API responses

• Config value retrieval down by 30%

• Instance deployment improvements

Agent Communication

Load balancing becomes an issue

• Use multiple management servers

• indirect.agent.lb.algorithm = roundrobin

• host=host1,host2,host3

Communication improvements

• 4.20 improvements in communication handling/TLS concurrency
and configurability

• agent.max.concurrent.new.connections = 1 per core

JVM GC algo

At large scale ParallelGC starts to stall

• Switching from ParallelGC to G1GC
In /etc/default/cloudstack-management

JAVA_OPTS="$JAVA_OPTS -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -

XX:+ParallelRefProcEnabled”

systemctl restart cloudstack-management

• Advantages:
• More predictable API latency

• Coping better under burst load

Final thoughts

• Phase 1: Keep it simple and build solid foundation

• Phase 2: Start shaping the performance for predictable behavior

• Phase 3: Fine tuning of pools, threads, and GC to avoid stalls

• These are not rules or full guide

• Take this as a starting point, not a final solution

Q&A
Tell us your story!

	Slide 1: CloudStack Scalability
	Slide 2: About me
	Slide 3: Background
	Slide 4: Before We Start
	Slide 5: Scaling Journey: Tree Key Phases
	Slide 6: Phase 1: Scaling to 200 Hosts
	Slide 7: Basic System Tuning
	Slide 8: Resource Monitoring
	Slide 9: Resource Monitoring
	Slide 10: Phase 1: Summary
	Slide 11: Phase 2: Optimizations
	Slide 12: Architecture Changes
	Slide 13: Network and Storage
	Slide 14: Database Optimization
	Slide 15: Purge Strategy
	Slide 16: Summary
	Slide 17: Phase 3: Full Scale
	Slide 18: Database – Pooling and concurrency
	Slide 19: General Pooling
	Slide 20: Caching Framework
	Slide 21: Agent Communication
	Slide 22: JVM GC algo
	Slide 23: Final thoughts
	Slide 24: Q&A

